
Math 114 Assignment Five Solutions Stephen Mackereth

Problem Three.

There were lots of interesting solutions to this problem! I think the slickest is this. Decom-
pose f into f(x) = f+(x) − f−(x) in the usual way: f+(x) := f |E+ , where E+ = {x ∈ Rn :
f(x) > 0} ⊂ Rn and E− = {x ∈ Rn : f(x) ≤ 0} ⊂ Rn. By the measurability of f , both E+

and E− are measurable.

Let’s focus our attention on f+ : E+ → R. By the result of the previous pset, we know that
if
∫
E+

f+ = 0, then f+ = 0 a.e. We can then do the same thing for E−. So it will suffice to

show that
∫
E+

f+ = 0.

Measurable sets can be decomposed into the union of an Fσ set and a set of measure zero.
So we can write E+ = F ∪ S, where F is Fσ and m(S) = 0, and∫

E+

f+ =

∫
E+

f =

∫
F

f +

∫
S

f =

∫
F

f.

But F is obtained as the countable union of closed sets. Closed sets are complements of open
sets. Now open sets in Rn can be expressed as the countable union of disjoint open boxes,
together with their boundaries (which have measure zero, so we can neglect them). Therefore∫
open set

f = 0. In particular
∫
Rn f = 0 as well. Thus

∫
closed set

f =
∫
Rn f −

∫
open set

f = 0.

From this it follows that
∫
F
f = 0 (by expressing F as some suitable almost disjoint count-

able union of closed sets). �

Problem Four.

Define {Ek}∞k=1, a family of measurable subsets of Rd, by

Ek := {x ∈ [0, 1] : the decimal expansion of x contains a 7 at the k-th place}

and note that m(Ek) = 1
10

.

Let
E = {x ∈ Rd : x ∈ Ek, for infinitely many k} = “ lim sup ”k→∞(Ek).

Now, we can write

E =
∞⋂
n=1

⋃
k≥n

Ek,

and therefore E is measurable.

Warning! This construction is a bit hard to think of! (As are all these weird countable
unions-and-intersections things.) But it works! Think about it!

Maybe the way to say it is,

x ∈ E ⇐⇒ “for all n ∈ N, there exists some k ≥ n such that x ∈ Ek”. That will ensure that x is in
infinitely many of the Ek’s.
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Then the giant intersection
⋂∞

n=1 writes down the “for all”, and the giant union
⋃

k≥n writes down the
“there exists”.

Anyway, I claim that m(E) = 1. To see this, consider the complement:

Ec ∩ [0, 1] =
∞⋃
n=1

⋂
k≥n

Ec
k ∩ [0, 1]

=⇒ m(Ec ∩ [0, 1]) =
∞∑
n=1

m

(⋂
k≥n

Ec
k ∩ [0, 1]

)

=
∞∑
n=1

inf
k≥n

(
9

10

)k−n
=
∞∑
n=1

0

= 0

where we used the fact that, for this particular construction, it’s always the case that Ej and
Ek are “independent events” in the sense that m(Ej∩Ek) = m(Ej)m(Ek) and m(Ec

j ∩Ec
k) =

m(Ec
j )m(Ec

k). Note that this is not generally true, but because of the way the Ek have been
chosen, it works out this time. �

Remark: Compare this problem with the second Borel-Cantelli lemma, and also the Cantor
set construction.
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