Problem Three.

There were lots of interesting solutions to this problem! I think the slickest is this. Decompose f into $f(x)=f_{+}(x)-f_{-}(x)$ in the usual way: $f_{+}(x):=\left.f\right|_{E_{+}}$, where $E_{+}=\left\{x \in \mathbb{R}^{n}\right.$: $f(x)>0\} \subset \mathbb{R}^{n}$ and $E_{-}=\left\{x \in \mathbb{R}^{n}: f(x) \leq 0\right\} \subset \mathbb{R}^{n}$. By the measurability of f, both E_{+} and $E_{\text {- }}$ are measurable.

Let's focus our attention on $f_{+}: E_{+} \rightarrow \mathbb{R}$. By the result of the previous pset, we know that if $\int_{E_{+}} f_{+}=0$, then $f_{+}=0$ a.e. We can then do the same thing for E_{-}. So it will suffice to show that $\int_{E_{+}} f_{+}=0$.
Measurable sets can be decomposed into the union of an F_{σ} set and a set of measure zero. So we can write $E_{+}=F \cup S$, where F is F_{σ} and $m(S)=0$, and

$$
\int_{E_{+}} f_{+}=\int_{E_{+}} f=\int_{F} f+\int_{S} f=\int_{F} f
$$

But F is obtained as the countable union of closed sets. Closed sets are complements of open sets. Now open sets in \mathbb{R}^{n} can be expressed as the countable union of disjoint open boxes, together with their boundaries (which have measure zero, so we can neglect them). Therefore $\int_{\text {open set }} f=0$. In particular $\int_{\mathbb{R}^{n}} f=0$ as well. Thus $\int_{\text {closed set }} f=\int_{\mathbb{R}^{n}} f-\int_{\text {open set }} f=0$. From this it follows that $\int_{F} f=0$ (by expressing F as some suitable almost disjoint countable union of closed sets).

Problem Four.

Define $\left\{E_{k}\right\}_{k=1}^{\infty}$, a family of measurable subsets of \mathbb{R}^{d}, by

$$
E_{k}:=\{x \in[0,1]: \text { the decimal expansion of } x \text { contains a } 7 \text { at the } k \text {-th place }\}
$$

and note that $m\left(E_{k}\right)=\frac{1}{10}$.
Let

$$
E=\left\{x \in \mathbb{R}^{d}: x \in E_{k}, \text { for infinitely many } k\right\}=" \lim \sup "_{k \rightarrow \infty}\left(E_{k}\right)
$$

Now, we can write

$$
E=\bigcap_{n=1}^{\infty} \bigcup_{k \geq n} E_{k},
$$

and therefore E is measurable.
Warning! This construction is a bit hard to think of! (As are all these weird countable unions-and-intersections things.) But it works! Think about it!

Maybe the way to say it is,
$x \in E \Longleftrightarrow$ "for all $n \in \mathbb{N}$, there exists some $k \geq n$ such that $x \in E_{k}$ ". That will ensure that x is in infinitely many of the E_{k} 's.

Then the giant intersection $\bigcap_{n=1}^{\infty}$ writes down the "for all", and the giant union $\bigcup_{k \geq n}$ writes down the "there exists".

Anyway, I claim that $m(E)=1$. To see this, consider the complement:

$$
\begin{aligned}
E^{c} \cap[0,1] & =\bigcup_{n=1}^{\infty} \bigcap_{k \geq n} E_{k}^{c} \cap[0,1] \\
\Longrightarrow m\left(E^{c} \cap[0,1]\right) & =\sum_{n=1}^{\infty} m\left(\bigcap_{k \geq n} E_{k}^{c} \cap[0,1]\right) \\
& =\sum_{n=1}^{\infty} \inf _{k \geq n}\left(\frac{9}{10}\right)^{k-n} \\
& =\sum_{n=1}^{\infty} 0 \\
& =0
\end{aligned}
$$

where we used the fact that, for this particular construction, it's always the case that E_{j} and E_{k} are "independent events" in the sense that $m\left(E_{j} \cap E_{k}\right)=m\left(E_{j}\right) m\left(E_{k}\right)$ and $m\left(E_{j}^{c} \cap E_{k}^{c}\right)=$ $m\left(E_{j}^{c}\right) m\left(E_{k}^{c}\right)$. Note that this is not generally true, but because of the way the E_{k} have been chosen, it works out this time.
Remark: Compare this problem with the second Borel-Cantelli lemma, and also the Cantor set construction.

